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An extension of numerical methods described in previous papers is used to analyse 
the time-dependent rotationally-symmetric motion of an incompressible viscous 
fluid contained between two concentric spheres having a common axis of rotation. 
The motion is governed by a pair of coupled non-linear partial differential equa- 
tions in three independent variables, with singular end conditions. The computa- 
tional process is described, and numerical solutions are presented for cases in 
which one (or both) of the spheres is given an impulsive change in angular 
velocity-starting from a state of either rest or uniform rotation. Reynolds 
numbers lie in the range 10-1500. 

1. Introduction 
The motion of a viscous fluid in a rotating container is of interest in engineer- 

ing design (centrifuges, fluid gyroscopes) and also in geophysics. We consider 
here a spherical geometry, in which an incompressible viscous fluid is contained 
between two concentric spheres whose angular velocities about a common axis 
of rotation may be arbitrarily-prescribed functions of time. We restrict our atten- 
tion to rotationally-symmetric motions. Such motions may be described in terms 
of a pair of coupled non-linear partial differential equations in three independent 
variables; one is of second order, and the other is of fourth order. The differential 
operators involved in these equations become singular a t  the polar boundaries. 

Available theoretical work concerning such problems is primarily of a 
boundary-layer or singular-perturbation character; we mention Howarth (1951), 
Proudman (1956), Lord & Bowden (1963), Pox (1964), Greenspan (1964) and 
Carrier (1966). Our purpose is to examine the way in which numerical methods 
can supplement or extend such analytical studies. 

As might be expected, there are problems of accuracy, stability, and excessive 
computer time encountered in developing numerical solutions for problems of 
this kind. It is important to provide means for reliable verification of computer 
solutions. Our computational procedure is an extension of the methods previ- 
ously used for an injection problem and for a rotating disk problem (Pearson 
1965a, b) .  It is described in detail in 4 3. Verification methods are discussed in $4; 
one ingredient in this verification is an apparently new exact analytical solution 
of the Navier-Stokes equations. 

t The &st part of this work was carried out at the Sperry Rand Research Center in 
Sudbury, Mass. 
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$5  gives computational results for a selection of problems which includes : 
(a)  steady-state flow patterns for rotation of outer sphere alone, for Reynolds 

numbers of 10, 100, 1000; 
( b )  time-dependent flow patterns for case in which one of the spheres is started 

from rest; 
( c )  spin-up problem, in which mutual angular velocities of both spheres are 

altered by small amount (or by large amount) from initial state of uniform 
rotation; 

(d )  case in which angular velocity of inner sphere is suddenly reduced, starting 
from state of uniform rotation. 

In  all of these cases, the inner radius was one-half the outer. The Reynolds 
number was usually chosen in the range 1000-1500. The number of mesh points 
used ranged from 800 to 3200; about one to six hours of 7094 Mod I1 time was 
required per problem. 

2. Equations of motion 
Consider the region between two concentric spheres, as shown in figure 1. Each 

sphere may rotate independently about the Z-axis. Only rotationally symmetric 
motions are considered, so that all quantities are independent of the azimuthal 
angle. The velocity components in the directions of increasing r and 8 are u and v, 
respectively; the velocity perpendicular to the meridional plane is w. For in- 
compressible Row, the Navier-Stokes equation implies (Rosenhead 1963) 

u = $,lr2sin8, 

v = - sin 6, 

w = Q/rsine, 

where 

[llrTr cos 8 - $0 sin 191 = uD49, 
2D2 ?,b +- r3 sin2 6' 

(3) 

where $ is the stream function, v the kinematic viscosity, and where subscripts 
denote partial derivatives. 

Let R, and w, be reference values of radius and angular velocity, respectively. 
Then non-dimensional quantities (denoted by asterisks) can be defined via 

r = r*RO, u = u*R,w,, $ = $*Rgw,, 

t = t*/wo, L2 = Q*R;w,. 
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With these substitutions, ( 1 )  and (2) retain their form, except that all quantities 
are replaced by their dimensionless equivalents, and Y is replaced by l / R e ,  where 
the Reynolds number Re is defined by 

Re = ug R,/v. (4) 

We consider that this change has been made, so that (1) and (2) are now non- 
dimensional; v is considered replaced by l / R e ,  and we drop the asterisks. We 
choose R, = radius of outer sphere. 

FIGURE 1. Region between two spheres. 

The boundary conditions are clearly that $ = a$/& = 0 on the boundaries of 
the region of figure 1,  and that Q is prescribed on all of these boundaries (note 
that Q = 0 at  0 = 0, n-). Moreover, 

D2$ = (uo - rv, - v) sin 6 

= 0 a t  6 = 0,n. (5) 

Some of the coefficients in (1) and (2) are singular at 8 = 0, n; this implies that 
the quantities multiplied by these coefficients must vanish at 6 = 0 , ~ .  Contrary 
to initial expectation, these coefficient singularities did not result in any computa- 
tional difficulties, and this is perhaps reasonable, for the boundaries at 6 = 0, 
n- are lines rather than surfaces and so have only a relatively weak influence on 
the nature of the solution of a problem in three space dimensions (rotational 
symmetry does not affect this basic characteristic). 

3. Computational procedure 
We will describe here only the general outline of the computational procedure; 

further details will be found elsewhere (Pearson 1966). 
The region of figure 1 is covered by a mesh, as indicated in the lower portion of 

that figure. Let A0 and Ar denote the mesh spacing in the directions of increasing 
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8 and r respectively, and let At denote the increment in time. Let &. denote 
the value of any quantity 9 at time nAt and at position 8 = iA0,  r = R,+jAr, 
where R, is the inner radius. The computational process consists in using pre- 
viously determined values of p, Dzp, and Q at times nAt, (n- l )At ,  and 
(n - 2)At, together with numerical approximations to (1) and (2), to determine 
values of these quantities at times (n + 1)At. The procedure is as follows. 

(i) Extrapolate parabolically to obtain approximate values of p and D2@ at 
all mesh points, a t  time (n + 1)At. (In particular, pn+l = 0 on all boundary mesh, 
points.) 

(ii) Insert values for Qn+l at all boundary mesh points, as prescribed by given 
angular velocity histories of spheres. 

(iii) Use ( 1 )  to determine approximate values for Qn+l at all interior mesh 
points; this is done in two half-steps, using the implicit alternating direction 
method (for reasons of stability and accuracy) described in note 1 below. The 
procedure makes use of the current approximations to the 

(iv) Use (2) to determine approximate values for (Dzp)n+l at all interior mesh 
points, using the current approximations to Qn+l, $n+l, and boundary values of 
(DZp)n+l. Again this is done in two half-steps, of the character discussed in note 1. 

(v) Using the values of (Dzp)n+l determined in step (iv), and the prescribed 
values of $n+l on the boundary, use successive over-relaxation to solve the 

Dz$ = pTT -I- T - ~  $08 - r--2 cot 8 p8 equation 

for values of 
(vi) Although the values of pn+' obtained in step (v) provide improvements 

over previous approximations, the direct replacement of the previous values by 
these new values is found to lead to overall computational instability. Conse- 
quently, a weighting procedure is used, in which previous values (pn+l)old are 
replaced by new values ( pn+l),ew via the formula 

values. 

at interior mesh points. 

(P+' )new = f l ( F + l ) o l d  + (1 -8) (@I."+l)57 (6) 

where (pn+1)6 denotes the values obtained in step (v) . The optimal value of the 
weighting factor S depends somewhat on Reynolds number, but is typically 
about 0.7. 

(vii) Use the boundary condition appn = 0, together with the pn+l values near 
the boundary as found in step (vi), in Taylor series expansions so as to obtain im- 
proved values of (Dzp)n+l on boundary mesh points. (The use of several terms of 
the Taylor series expansion is essential for accuracy in high-order equation 
systems.) Again, a weighted combination of the 'new' and 'old' values for 
(Dz$)n+l must be formed; the weighting factor S in the equation analogous to  
(6) is typically 0.92. 

(viii) Return to step (iii), and continue iteration through these computational 
steps until a convergence criterion is satisfied. The time step is then complete. 

Note 1 
The first half time step for (1) is given here as typical of the implicit alternating 
direction procedure used in steps (iii) and (iv). Notice that values of fin++, the 
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unknown, are used in all differences involving the subscript i; in the second half 
step, the unknown values of Qnfl would appear in all differences involving the 
subscript j. The sets of implicit equations that result are easily solved by Gaussian 
elimination. This procedure is an extension to non-linear equations of the method 
used by Peaceman & Rachford (1955) for diffusion equation problems; it can be 
shown to possess substantial advantages of accuracy and computational stability 
over such explicit methods as those of DuPort & Prankel (1953). 

Note 2 

The results of 3 5 correspond to situations in which the angular velocity of one or 
both of the spheres is impulsively changed. Computationally, this necessitated 
a special treatment, in that the first time step was replaced by a large number of 
amaller time steps; that this process is appropriate is shown in Pearson ( 1 9 6 5 ~ ) .  

4. Verification of computer solutions 
In  addition to the requirement that the flow fields on the two sides of the 

equator be symmetrical, and that decreases in the space and time mesh intervals 
should produce no significant change in the calculated cesults, the computer 
solutions were verified in the following ways. 

(a) Low Re number solutions in steady state 

If the non-linear terms in (1) and (2) are negligible, then we can set Q = f ( r )  sin28 
€or the steady-state solution to yield f " - (2/r2) f = 0. With outer radius = R, = 1, 
and inner radius = 4, consider the case in which the outer sphere is given unit 
angular velocity (relative to the reference values w,) and in which the inner 
sphere is held at  rest. Then ( 1  1 )  requires that 

f = +2-+1. 
7 



32 8 Carl E. Pearson 

In  ( 2 ) ,  the first non-linear term on the left-hand side provides the ‘driving force ’ 
for this equation and so cannot be neglected. The substitution Q = f ( r )  sin2 8 
suggests that @ should have the form g(r )  sin2 0 cos 0, and we find 

@ = (10-3Re)(l - r ) 2 ( r - ~ ) 2 [ 8 . 6 9 r + 2 6 - 0 7 + 9 . 7 3 r - 1 -  1.78r-2]sin20cos0. (7) 
For the choice Re = 10 (cf. figure 2), these formulas gave results agreeing to 
within 4 or 5 significant figures with the results obtained by the computational 
procedure of 5 3 (using a 40 x 20 mesh). 

FIGURE 2. Contour lines of lo5@ for Re = 10, T = 7.05. Inner sphere held fixed, outer 
started at  T = 0 with o = 1. (Note: flow is very close to this even a t  T = 1). 

( b )  Short time solution 

Even for large values of Re, the non-linear terms in ( 1 )  and ( 2 )  are small, for small t ,  
for situations in which one or both spheres are started from rest, and all except 
the first such term on the left-hand side of (2) may be neglected. We write 
Q = f ( r ,  t )  sin2 0, and find 

For the case in whichthe outer sphere is impulsively given unit angular velocity, 
(8) may be solved by Laplace transforms; the solution behaviour can be deter- 
mined for short values oft by considering large values of the transform variable, 
and this leads to the asymptotic result 

f N erfc [( 1 - r)(Re)*/Btg] - erfc r(Re)*/2t&. 
For values of Re = 10, 100, 1000, this formula gave results in excellent agree- 
ment with those obtained by the procedure of § 3, for small values oft. 

ft = (fm - 2f/r2)/Re. ( 8 )  

(c )  Ring vortex problem 
The functions 

@ = exp { -a2(t/Re)},/rJ,(,++, (ar) . sin28. Pk(cos 61, CI = a$, (9) 
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provide an exact (and apparently new) solution of (1) and (2); the corresponding 
fluid motion is that of a set of oppositely-rotating ring vortices. The boundary 
conditions on the spherical surfaces that correspond to this solution were imposed, 

FIGURE 3 FIGURE 4 

FIGURE 3. Contour lines of lo4$ for Re = 100, T = 62 (essentially steady state). Inner 
sphere held fixed, outer started impulsively with w = 1. 

FIGVRE 4. Contour lines of lo4$ for Re = 1000, T = 223. Inner sphere held fixed, outer 
started impulsively with o = 1. 

FIGURE 5. Contour lines of angular velocity for Re = 1000, T = 223. Outer sphere started 
impulsively at T = 0. 
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and the procedure of 3 3 was used to follow the motion computationally; the com- 
puted results were found to be in close agreement with those given by the above 
exact solution. 

FIGURE 6 FIGURE 7 

FIGURE 6. Contour lines of lo4$ for Re = 1000, T = 8. Inner sphere held fixed, outer 
started impulsively with o = 1. 

FIGURE 7. Contour lines of lo4$ for Re = 1000, T = 18. Inner sphere held fixed, outer 
started impulsively with o = 1. 

FIGURE 8. Contour lines of lo4$ for Re = 1000, T = 47. Inner sphere held fixed, outer 
sphere started impulsively at  I’ = 0. 
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5. Computed fluid motions 
In all cases, the radius of the inner sphere was taken as + that of the outer 

sphere. 
Figures 2 , 3  and 4 show the steady-state flow patterns (contour lines of stream 

function q+) for the case in which the inner sphere is held fixed and the outer given 

FIGURE 9 FIGURE 10 

FIGURE 9. Contour lines of -$ x lo6 for Re = 1000, T = 5. Outer sphere held fixed, inner 
started impulsively at at T = 0 with o = 1. 

FIGURE 10. Contour lines of - @ x lo4 for Re = 1000, T = 443. Outer sphere held fixed, 
inner started impulsively at T = 0 with o = 1. 

FIGURE 11. Contour lines of angular velocity for Re = 1000, T = 443. Outer sphere held 
fked, inner started impulsively at T = 0 with o = 1. 
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unit angular velocity, for Reynolds numbers of 10, 100, and 1000 respectively. 
For Re = 10, the flow patterns agreed very closely with those described by (7);  
for Re = 100, the non-linear terms were sufficiently important that (7)  gave 
results in error by a factor of 2. Figure 4 shows that at  Re = 1000 most of the 
circulation tends to lie in a cylindrical sheath of radius approximately equal to 

Inner sphere 
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FIGURE 12. Angular velocity profile at  
0 = 90' for spin-up case Re = 1001). 

FIGURE 13. Angular velocity profile at  
0 = 4 5 O  for spin-up case Re = 1000. 

r 

FIGURE 14. Angular velocity profile at  0 = 4a0 for spin-up case Re = 1000. 

that of the inner sphere; also, there is a recirculation zone near the equator. The 
angular velocity profiles for this Re = PO00 case are shown in figure 5, and it is 
seen that, outside the cylindrical sheath region, the rotation is almost of solid 
body character. 

For Re = 1000, several stages in the build up of the steady-state motion of 
figure 4 are shown in figures 6 , 7  and 8. At T = 8, a recirculation zone appeared, 
and persisted until about T = 12; by T = 47, the flow had begun to acquire its 
cylindrical sheath character, but the steady-state recirculation zone had not yet 
reappeared. 
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FIGURE 15. Contour lines for los$. Inner and outer spheres spun-up together from w = 1 
to 0 = 1.05. Re = 1000, T = 7. 

Radial distance Radial distance 

FIGURE 16. Angular velocity profile a t  FIGURE 17. Angular velocity 
8 = 90". Spin-up from w = 1.0 to 0 = 45". Spin-up from w 
w = 1.5. w = 1.5. 

44 
1-5 

1.4 
R 

2 1.3 
5 

4 

0 
.- 

2 
2 1.2 

4 1.1 

1.0 
0.5 06 0.7 08 09 1.0 

profile a t  
= 1.0 to 

Radial distance 

FIGURE 18. Angular velocity profile at 0 = 46". Spin-up from w = 1.0 to w = 1.5. 
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FIGURE 19. Contour lines for lo4+. TWO spheres spun-up together from w = 1 to w = 1.5. 
Re = 1000, T = 7. 
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FIGURE 20. 8 = 90". Inner sphere 
slowed to w = 0.95. 

FIGURE 21. 8 = 45". Inner sphere 
slowed to w = 0.95. 

Radial distance 

FIGURE 22. 0 = 44". Inner sphere slowed to o = 0.96. 
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Figures 9 and 10 depict the contour lines of $, at times T = 5 and T = 443, 
respectively, for the case in which the outer sphere is held fixed and the inner 
given unit angular velocity at T = 0. Note the relatively sharp flow concentra- 
tion in the equatorial region. Angular velocity profiles are shown in figure 11. 

The next sequence of figures relate to the ' spin-up ' problem, in which, starting 
from a steady-state angular velocity of unity (solid body rotation with Re = 1000) 
both spheres are given the same impulsive increase in angular velocity. For the 

FIGURE 23. Contour lines of lo5@. For case in which angular velocity of inner sphere is 
impulsively reduced to 0.95; that of outer sphere remains unaltered at 1.0. Be = 1000, 
T = 72 (essentially steady-state). 

case in which this increase is from w = 1 to w = 1.05 (small perturbation), profiles 
of angular velocity a t  various times are given in figures 12,13 and 14, correspond- 
ing to 8 = go", 45" and 4Q", respectively. Note the overshoot near the inner 
sphere. Contour lines of $ at an early stage of the motion (T = 7) are shown in 
figure 15. Corresponding results for the case in which the spin-up is from w = 1 
to w = 1-5 (large perturbation) are shown in figures 16, 17, 18 and 19. 

The final case studied was that in which, starting from solid-body type rota- 
tion at w = 1, Re = 1000, the angular velocity of the inner sphere alone was im- 
pulsively altered to w = 0.95 at T = 0. Angular velocity profiles a t  6 = go", 45" 
and 4 + O  are shown for various times in figures 20,21 and 22; the resulting steady- 
state stream function contour lines are shown in figure 23. A weak recirculation 
zone is in evidence. 
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